Skip to main content

Perl Floating Point-Multiplication Benchmark

I was worried whether I was making basic errors in testing the Perl version, so I decided to use the Benchmark module to get the numbers. I copied the matmult.pl file and added use Benchmark ':all' to the header of the file. The main() routine got changed to :

    my $time = $ARGV[0] || 5;
    my %vars = (   2 => [],
                   5 => [],
                  10 => [],
                  32 => [],
                 100 => [],
    );
    for my $size ( keys %vars ) {
       my $filestub = q{F_} . $size . q{x} . $size . q{.};
       $vars{$size}[0] = readMatrix( $filestub . '1' );
       $vars{$size}[1] = readMatrix( $filestub . '2' );
    }
    
    say "Processing for $time seconds each size ",
        "will take @{[5 * $time]} seconds."; 
    say scalar localtime;
    cmpthese( -$time, {
       'F_2x2'     => sub { matmult( $vars{2}[0],
                                        $vars{2}[1]); },
       'F_5x5'     => sub { matmult( $vars{5}[0],
                                        $vars{5}[1]); },
       'F_10x10'   => sub { matmult( $vars{10}[0],  
                                        $vars{10}[1]); },
       'F_32x32'   => sub { matmult( $vars{32}[0],  
                                        $vars{32}[1]); },
       'F_100x100' => sub { matmult( $vars{100}[0], 
                                        $vars{100}[1]); },
       });
    say scalar localtime;


The user can specify how long each variant should be run, with a default of 5 seconds for each size if no arg is provided.

-➤   perl ./benchmark.pl 2
Processing for 2 seconds each size will take 10 seconds.
Mon Jun 15 17:11:08 2015
              Rate F_100x100   F_32x32   F_10x10     F_5x5     F_2x2
F_100x100   5.39/s        --      -97%     -100%     -100%     -100%
F_32x32      163/s     2931%        --      -97%     -100%     -100%
F_10x10     4909/s    90934%     2904%        --      -85%      -98%
F_5x5      32731/s   606904%    19929%      567%        --      -88%
F_2x2     264660/s  4908131%   161856%     5292%      709%        --
Mon Jun 15 17:11:22 2015

Adjusting for the number of multiplications involved in each size of matrix --- 8 for the 2x2 up to 1,000,000 for the 100x100 --- produces results very similar to what we've already seen ( millions of multiplications per second):

perl -E'say  "100 => 5.36";
        say  "32  => ", 32000 * 154 / 10**6;
        say  "20  => ", 1000 * 4904 / 10**6;
        say  "5   => ", 125 * 32767 / 10**6;
        say  "2   => ", 8 * 263472  / 10**6; 
       '

100 => 5.39
32  => 5.216
20  => 4.909
5   => 4.091375
2   => 2.11728

Rerunning the benchmarks with integer matrices and use integer enabled generated insignificantly, fractionally better numbers; though I wonder if the pragma affected Benchmark's calculations.

Comments

Joaquin Ferrero said…
Please, test PDL (Perl Data Language), after.
Tom Legrady said…
Hi Joaquin - Yes, I'm aware of PDL, but I've never used it. I'll see how hard it is.

Popular posts from this blog

Perl5, Moxie and Enumurated Data Types

Moxie - a new object system for Perl5 Stevan Little created the Moose multiverse to upgrade the Perl 5 programming language's object-oriented system more in line with the wonderfull world of Perl 6. Unfortunately, it's grown into a bloated giant, which has inspired light-weight alternatives Moos, Moo, Mo, and others. Now he's trying to create a modern, efficient OO system that can become built into the language. I've seen a few of his presentations at YAPC (Yet Another Perl Conference, now known as TPC, The Perl Conference), among them ‎p5 mop final final v5 this is the last one i promise tar gz While the package provides some POD documentation about the main module, Moxie, it doesn't actually explain the enum package, Moxie::Enum. But delving into the tests directory reveals its secrets. Creating an Enum package Ranks { use Moxie::Enum; enum by_ARRAY => qw( unused 2 3 4 5 6 7 8 9 10 J Q K A ); enum by_HASH => { 2 => 2, 3 =...

Implementing the Game with Perl & Moxie

I've been creating classes relating to playing cards using the new Moxie module for the Perl programming language. The objective is to implement the card game Go Fish! as specified at Rosetta Code . The Outside-In View An actual program file should be simple; all the real code should be in testable modules. In this case, play_go_fish.pl takes this to an extreme. #!/usr/bin/env perl use warnings; use strict; use 5.026; use lib '.'; use Game; Game->new()->play(); As of Perl 5.26, the current directory is not automatically part of @INC, the search path for modules, so it is necessary to include it manually. That makes it possible to load the Game module, to instantiate an instance, and play a game. package Game; use Moxie; use lib '.'; use Deck; use Computer; use Human; use Const::Fast; extends 'Moxie::Object'; const my @PLAYERS => qw( human computer ); const my $INITIAL_DEAL_COUNT => 9; A Game.pm object begins like most ot...

AI crap at 100 words a minute

I requested an AI to  create an astable multivibrator that can oscillate at 100KHz with a 50% duty cycle. Of course, this isn't an essay topic, it's a (trivial) electronic circuit. But it set out to provide the required number of words without actually saying anything useful. Here's what came out ... Note the reference to an article from 1968, long before any modern technology. In particular, getting through several paragraphs about oscillators without mentioning the 55 timer ic is unimaginable.